E-411-PRMA
 Lecture 2

Christopher David Desjardins

20 August 2015

Table A. 4
Areas of the standard normal distribution. The entries in this table are the probabilities that a standard normal random variable is between 0 and z (the shaded area).

z	SECOND DECIMAL PLACE IN z									
	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0. 1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0. 1700	0. 1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4492	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946				
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998									
4.0	0.49997									
4.5	0.499997									
5.0	0.4999997									

SAT

The SAT is an aptitude test that high school students take. It is one of the criteria that is used in a college's decision to admit a student. It is composed of a math and a verbal section. Each has a mean of 500 and a standard devation of 110 and is normally distributed.

- What are the scores on the test that corresponds to $3,2,1,0$, $-1,-2,-3$ standard deviations?

SAT

The SAT is an aptitude test that high school students take. It is one of the criteria that is used in a college's decision to admit a student. It is composed of a math and a verbal section. Each has a mean of 500 and a standard devation of 110 and is normally distributed.

- What are the scores on the test that corresponds to $3,2,1,0$, $-1,-2,-3$ standard deviations?
- Assume 1000 people took the SAT,

SAT

The SAT is an aptitude test that high school students take. It is one of the criteria that is used in a college's decision to admit a student. It is composed of a math and a verbal section. Each has a mean of 500 and a standard devation of 110 and is normally distributed.

- What are the scores on the test that corresponds to $3,2,1,0$, $-1,-2,-3$ standard deviations?
- Assume 1000 people took the SAT,
- If Jon got a 700 on the math section, how many people scored above him?

SAT

The SAT is an aptitude test that high school students take. It is one of the criteria that is used in a college's decision to admit a student. It is composed of a math and a verbal section. Each has a mean of 500 and a standard devation of 110 and is normally distributed.

- What are the scores on the test that corresponds to $3,2,1,0$, $-1,-2,-3$ standard deviations?
- Assume 1000 people took the SAT,
- If Jon got a 700 on the math section, how many people scored above him?
- If 300 people scored below Anna on the verbal section, what was Anna's score?

SAT

The SAT is an aptitude test that high school students take. It is one of the criteria that is used in a college's decision to admit a student. It is composed of a math and a verbal section. Each has a mean of 500 and a standard devation of 110 and is normally distributed.

- What are the scores on the test that corresponds to $3,2,1,0$, $-1,-2,-3$ standard deviations?
- Assume 1000 people took the SAT,
- If Jon got a 700 on the math section, how many people scored above him?
- If 300 people scored below Anna on the verbal section, what was Anna's score?
- How many people got scores between 390 and 610 ?

SAT

The SAT is an aptitude test that high school students take. It is one of the criteria that is used in a college's decision to admit a student. It is composed of a math and a verbal section. Each has a mean of 500 and a standard devation of 110 and is normally distributed.

- What are the scores on the test that corresponds to $3,2,1,0$, $-1,-2,-3$ standard deviations?
- Assume 1000 people took the SAT,
- If Jon got a 700 on the math section, how many people scored above him?
- If 300 people scored below Anna on the verbal section, what was Anna's score?
- How many people got scores between 390 and 610 ?
- If Sigga got a 350 on the math section, how many people scored below her?

SAT

The SAT is an aptitude test that high school students take. It is one of the criteria that is used in a college's decision to admit a student. It is composed of a math and a verbal section. Each has a mean of 500 and a standard devation of 110 and is normally distributed.

- What are the scores on the test that corresponds to $3,2,1,0$, $-1,-2,-3$ standard deviations?
- Assume 1000 people took the SAT,
- If Jon got a 700 on the math section, how many people scored above him?
- If 300 people scored below Anna on the verbal section, what was Anna's score?
- How many people got scores between 390 and 610 ?
- If Sigga got a 350 on the math section, how many people scored below her?
- If Einar was in the 98% percentile in math, what was Einar's score?

Other standard scores

- T scores have a mean of 50 and a standard deviation of 10 .

Other standard scores

- T scores have a mean of 50 and a standard deviation of 10 .
- What would T scores of 30 and 70 be as z-scores?

Other standard scores

- T scores have a mean of 50 and a standard deviation of 10 .
- What would T scores of 30 and 70 be as z -scores?
- stanine, range from 1 to 9 , are centered at 5 with a standard deviation of 2. Each stanine, corresponds to $1 / 2$ a standard deviation and the 5th stanine is at the mean.

Other standard scores

- T scores have a mean of 50 and a standard deviation of 10 .
- What would T scores of 30 and 70 be as z -scores?
- stanine, range from 1 to 9 , are centered at 5 with a standard deviation of 2. Each stanine, corresponds to $1 / 2$ a standard deviation and the 5th stanine is at the mean.
- If you were in the 3rd stanine, what would your z-score be?

Other standard scores

- T scores have a mean of 50 and a standard deviation of 10 .
- What would T scores of 30 and 70 be as z -scores?
- stanine, range from 1 to 9 , are centered at 5 with a standard deviation of 2. Each stanine, corresponds to $1 / 2$ a standard deviation and the 5th stanine is at the mean.
- If you were in the 3rd stanine, what would your z-score be?
- How many people would be below you assuming 1000 people took the same test as you?

Other standard scores

- T scores have a mean of 50 and a standard deviation of 10 .
- What would T scores of 30 and 70 be as z -scores?
- stanine, range from 1 to 9 , are centered at 5 with a standard deviation of 2. Each stanine, corresponds to $1 / 2$ a standard deviation and the 5th stanine is at the mean.
- If you were in the 3rd stanine, what would your z-score be?
- How many people would be below you assuming 1000 people took the same test as you?
- What percent of the people are between the 3rd and the 6th stanines?

Other standard scores

- T scores have a mean of 50 and a standard deviation of 10 .
- What would T scores of 30 and 70 be as z-scores?
- stanine, range from 1 to 9 , are centered at 5 with a standard deviation of 2. Each stanine, corresponds to $1 / 2$ a standard deviation and the 5th stanine is at the mean.
- If you were in the 3rd stanine, what would your z-score be?
- How many people would be below you assuming 1000 people took the same test as you?
- What percent of the people are between the 3rd and the 6th stanines?
- Various linear and non-linear transformations are done to create scores and scores may be normalized.

Confidence Intervals

- How do you interpret confidence intervals?

Confidence Intervals

- How do you interpret confidence intervals?
- How do you construct confidence intervals?

Confidence Intervals

- How do you interpret confidence intervals?
- How do you construct confidence intervals?

$$
\underbrace{\bar{X}}_{\text {Estimate }} \pm \underbrace{M}_{\text {Multipler }} * \underbrace{S E}_{\text {Standard Error }}
$$

Confidence Intervals

- How do you interpret confidence intervals?
- How do you construct confidence intervals?

$$
\underbrace{\bar{X}}_{\text {Estimate }} \pm \underbrace{M}_{\text {Multipler }} * \underbrace{S E}_{\text {Standard Error }}
$$

- Are we talking about the population or the sample?

Confidence Intervals

- How do you interpret confidence intervals?
- How do you construct confidence intervals?

$$
\underbrace{\bar{X}}_{\text {Estimate }} \pm \underbrace{M}_{\text {Multipler }} * \underbrace{S E}_{\text {Standard Error }}
$$

- Are we talking about the population or the sample?
- How does this relate to a hypothesis test?

What is a correlation?

- Is it an association?
- Does it imply causation?
- Is a correlation necessary for causation?
- Does it need linearity?
- Is it affected by variability?
- Is it affected by outliers?
- Is it related to the simple linear regression?

What is the Pearson correlation coefficient?

Pearson correlation coefficient

$$
\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^{2} \sum\left((Y-\bar{Y})^{2}\right.}}
$$

Calculating Pearson correlation coefficient

	X	Y
	5	6
3	0	
	1	0
Mean	3	2

$$
\begin{aligned}
& \mathrm{x}<-\mathrm{c}(5,3,1) \\
& \mathrm{y}<-\mathrm{c}(6,0,0) \\
& \operatorname{cor}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

R correlation applet

1. Open RStudio
2. Open correlation_applet.R
3. Click the "Source" button

Spearman's rho

- Non-parametric measure of association
- Appropriate when at least one of your variables is ordinal variables
- Don't use Pearson's correlation with ordinal variables!

Simple Linear Regression

- If are you interested in predicting height given someone's weight, what would you do?

Simple Linear Regression

- If are you interested in predicting height given someone's weight, what would you do?
- We could consider a regression model.

Simple Linear Regression

- If are you interested in predicting height given someone's weight, what would you do?
- We could consider a regression model.
- $Y_{i}=\beta_{0}+\beta_{1} * X_{i}$

Simple Linear Regression

- If are you interested in predicting height given someone's weight, what would you do?
- We could consider a regression model.
- $Y_{i}=\beta_{0}+\beta_{1} * X_{i}$
- How could we assess if this is appropriate?

1993 Growth Survey of 25,000 Hong Kongese children

source: http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_ 020108_HeightsWeights

Model Summary

Parameter	Estimate	SE	t-value	p-value
β_{0}	57.57	0.11	506.01	i .001
β_{1}	0.08	0.001	91.98	i .001

How does this relate to correlation?

Slope and the correlation

- There is a relationship between the estimated slope and the correlation between two variables in a simple linear regression.

Slope and the correlation

- There is a relationship between the estimated slope and the correlation between two variables in a simple linear regression.
$-r=\beta_{1} \frac{s d_{x}}{s d_{y}}$

Slope and the correlation

- There is a relationship between the estimated slope and the correlation between two variables in a simple linear regression.
- $r=\beta_{1} \frac{s d_{x}}{s d_{y}}$
- If $\beta_{1}=0.08$, the standard deviation of weight and height are 11.6608976 and 1.9016788 , respectively, what is r ?

Slope and the correlation

- There is a relationship between the estimated slope and the correlation between two variables in a simple linear regression.
- $r=\beta_{1} \frac{s d_{x}}{s d_{y}}$
- If $\beta_{1}=0.08$, the standard deviation of weight and height are 11.6608976 and 1.9016788 , respectively, what is r ?
- 0.5028585

Always look at the residuals

Residuals vs Fitted

Brief history of testing

- 2200 BCE, Chinese believed to use testing for determining who would get governmental jobs
- Greek and Romans categorized individuals based on personality type ("blood" or "phlegm")
- Francis Galton's classification based on "natural gift" (i.e. eugenics)
- Contributed to development of questionnaries, rating scales, and self-report inventories
- Wilhelm Wundt's laboratory and his focus on "standardization"
- James Cattell's mental tests
- Charles Spearman - reliability and factor analysis

Testing in the 20th century

- 1905, Binet and Simon publish a test measuring intelligence in mental retarded school children in Paris
- 1939, Wechsler publishes a test to measure intelligence in adults (would become WAIS)
- Group intelligence test administered by the US military during WWI and WWII
- WWI personality tests used to screen recruits

Necessary test assumptions

- Psychological traits and states exist

Necessary test assumptions

- Psychological traits and states exist
- Psychological traits and states can be measured

Necessary test assumptions

- Psychological traits and states exist
- Psychological traits and states can be measured
- Behavior on tests predicts non-test behavior

Necessary test assumptions

- Psychological traits and states exist
- Psychological traits and states can be measured
- Behavior on tests predicts non-test behavior
- Measurement error is part of the process

Necessary test assumptions

- Psychological traits and states exist
- Psychological traits and states can be measured
- Behavior on tests predicts non-test behavior
- Measurement error is part of the process
- Test can be fair

Necessary test assumptions

- Psychological traits and states exist
- Psychological traits and states can be measured
- Behavior on tests predicts non-test behavior
- Measurement error is part of the process
- Test can be fair
- Test can benefit society

What makes a good test?

Norm-Referenced and Standardization

- Individuals scores are relative only to some reference group

Norm-Referenced and Standardization

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct

Norm-Referenced and Standardization

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct
- Collectively, this group is known as a normative sample and data from them make up the norms

Norm-Referenced and Standardization

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct
- Collectively, this group is known as a normative sample and data from them make up the norms
- Standardization is the process of setting clear procedures for administrating, scoring, and interpreting the test

Norm-Referenced and Standardization

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct
- Collectively, this group is known as a normative sample and data from them make up the norms
- Standardization is the process of setting clear procedures for administrating, scoring, and interpreting the test
- The normative sample could also be the standardized sample but not always

Norm-Referenced and Standardization

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct
- Collectively, this group is known as a normative sample and data from them make up the norms
- Standardization is the process of setting clear procedures for administrating, scoring, and interpreting the test
- The normative sample could also be the standardized sample but not always
- Understanding the normative sample is very important, why?

Sampling

- Simple random sample
- Stratified random sample
- Cluster random sample
- Purposive sample
- Convenience sample

Different Norms

- Percentiles
- Developmental Norms
- Age Norms
- A 6 year old performs at the level of a 10 year old
- This is on this material only though!
- Grade Norms
- School year typically 10 months in the US
- A 4th grader is performing at the level of a 5th grader in third month
- This is on this material only though!
- National Norms, nationally representative
- Anchor norms enable two tests to be compared
- In USA, students could take SAT or ACT for admission to college

Fixed Reference and Criterion-Related

- Fixed reference group scores are used as the basis for calculation of future administrations of the test
- Raw scores are scaled relative to the performance of the fixed reference group
- Answering 50 items correctly one year and 50 on the following year doesn't mean you'll have the same score
- SAT does this through using anchor items and equating
- Criterion-referenced, evaluate a score with reference to a set criteria or standard NOT other test takers
- What is the fairest way to score grades in a class room?

