E-411-PRMA Lecture 2

Christopher David Desjardins

20 August 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Appendix A

TABLE A.4

Areas of the standard normal distribution. The entries in this table are the probabilities that a standard normal random variable is between 0 and z (the shaded area).

SECOND DECIMAL PLACE IN Z										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0,4998
3.5	0.4998									
4.0	0.49997									
4.5	0.499997									
5.0	0.4999997									

Reprinted with permission from Standard Mathematical Tables, 15th ed., @ CRC Press. Inc., Boca Raton, FL.

A-10

► What are the scores on the test that corresponds to 3, 2, 1, 0, -1, -2, -3 standard deviations?

► What are the scores on the test that corresponds to 3, 2, 1, 0, -1, -2, -3 standard deviations?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume 1000 people took the SAT,

- ► What are the scores on the test that corresponds to 3, 2, 1, 0, -1, -2, -3 standard deviations?
- Assume 1000 people took the SAT,
 - If Jon got a 700 on the math section, how many people scored above him?

- ► What are the scores on the test that corresponds to 3, 2, 1, 0, -1, -2, -3 standard deviations?
- Assume 1000 people took the SAT,
 - If Jon got a 700 on the math section, how many people scored above him?

If 300 people scored below Anna on the verbal section, what was Anna's score?

- ► What are the scores on the test that corresponds to 3, 2, 1, 0, -1, -2, -3 standard deviations?
- Assume 1000 people took the SAT,
 - If Jon got a 700 on the math section, how many people scored above him?

- If 300 people scored below Anna on the verbal section, what was Anna's score?
- How many people got scores between 390 and 610?

- ► What are the scores on the test that corresponds to 3, 2, 1, 0, -1, -2, -3 standard deviations?
- Assume 1000 people took the SAT,
 - If Jon got a 700 on the math section, how many people scored above him?
 - If 300 people scored below Anna on the verbal section, what was Anna's score?
 - How many people got scores between 390 and 610?
 - If Sigga got a 350 on the math section, how many people scored below her?

- What are the scores on the test that corresponds to 3, 2, 1, 0, -1, -2, -3 standard deviations?
- Assume 1000 people took the SAT,
 - If Jon got a 700 on the math section, how many people scored above him?
 - If 300 people scored below Anna on the verbal section, what was Anna's score?
 - How many people got scores between 390 and 610?
 - If Sigga got a 350 on the math section, how many people scored below her?
 - If Einar was in the 98% percentile in math, what was Einar's score?

▶ T scores have a mean of 50 and a standard deviation of 10.

► T scores have a mean of 50 and a standard deviation of 10.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What would T scores of 30 and 70 be as z-scores?

T scores have a mean of 50 and a standard deviation of 10.

- What would T scores of 30 and 70 be as z-scores?
- stanine, range from 1 to 9, are centered at 5 with a standard deviation of 2. Each stanine, corresponds to 1/2 a standard deviation and the 5th stanine is at the mean.

- **T** scores have a mean of 50 and a standard deviation of 10.
 - What would T scores of 30 and 70 be as z-scores?
- stanine, range from 1 to 9, are centered at 5 with a standard deviation of 2. Each stanine, corresponds to 1/2 a standard deviation and the 5th stanine is at the mean.
 - If you were in the 3rd stanine, what would your z-score be?

- **T** scores have a mean of 50 and a standard deviation of 10.
 - What would T scores of 30 and 70 be as z-scores?
- stanine, range from 1 to 9, are centered at 5 with a standard deviation of 2. Each stanine, corresponds to 1/2 a standard deviation and the 5th stanine is at the mean.
 - If you were in the 3rd stanine, what would your z-score be?
 - How many people would be below you assuming 1000 people took the same test as you?

- **T** scores have a mean of 50 and a standard deviation of 10.
 - What would T scores of 30 and 70 be as z-scores?
- stanine, range from 1 to 9, are centered at 5 with a standard deviation of 2. Each stanine, corresponds to 1/2 a standard deviation and the 5th stanine is at the mean.
 - If you were in the 3rd stanine, what would your z-score be?
 - How many people would be below you assuming 1000 people took the same test as you?
 - What percent of the people are between the 3rd and the 6th stanines?

- **T** scores have a mean of 50 and a standard deviation of 10.
 - What would T scores of 30 and 70 be as z-scores?
- stanine, range from 1 to 9, are centered at 5 with a standard deviation of 2. Each stanine, corresponds to 1/2 a standard deviation and the 5th stanine is at the mean.
 - If you were in the 3rd stanine, what would your z-score be?
 - How many people would be below you assuming 1000 people took the same test as you?
 - What percent of the people are between the 3rd and the 6th stanines?

 Various linear and non-linear transformations are done to create scores and scores may be normalized. How do you interpret confidence intervals?

- How do you interpret confidence intervals?
- How do you construct confidence intervals?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- How do you interpret confidence intervals?
- How do you construct confidence intervals?

 $\underline{X} \pm \underline{M} * \underline{SE}$ Estimate Multipler Standard Error

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- How do you interpret confidence intervals?
- How do you construct confidence intervals?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Are we talking about the population or the sample?

- How do you interpret confidence intervals?
- How do you construct confidence intervals?

- Are we talking about the population or the sample?
- How does this relate to a hypothesis test?

What is a correlation?

- Is it an association?
- Does it imply causation?
- Is a correlation necessary for causation?
- Does it need linearity?
- Is it affected by variability?
- Is it affected by outliers?
- Is it related to the simple linear regression?

What is the Pearson correlation coefficient?

Pearson correlation coefficient

$$\frac{\sum (X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum (X-\bar{X})^2 \sum ((Y-\bar{Y})^2}}$$

Calculating Pearson correlation coefficient

	Х	Υ
	5	6
	3	0
	1	0
Mean	3	2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

x <- c(5, 3, 1) y <- c(6, 0, 0) cor(x, y)

R correlation applet

- 1. Open RStudio
- 2. Open correlation_applet.R
- 3. Click the "Source" button

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Non-parametric measure of association
- Appropriate when at least one of your variables is ordinal variables

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Don't use Pearson's correlation with ordinal variables!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We could consider a regression model.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We could consider a regression model.

$$\blacktriangleright Y_i = \beta_0 + \beta_1 * X_i$$

- We could consider a regression model.
- $\blacktriangleright Y_i = \beta_0 + \beta_1 * X_i$
- How could we assess if this is appropriate?

1993 Growth Survey of 25,000 Hong Kongese children

source: http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_ 020108_HeightsWeights

Parameter	Estimate	SE	t-value	p-value
β_0	57.57	0.11	506.01	j.001
β_1	80.0	0.001	91.98	j.001

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How does this relate to correlation?

There is a relationship between the estimated slope and the correlation between two variables in a simple linear regression.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There is a relationship between the estimated slope and the correlation between two variables in a simple linear regression.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\blacktriangleright r = \beta_1 \frac{sd_x}{sd_y}$$

- There is a relationship between the estimated slope and the correlation between two variables in a simple linear regression.
- $r = \beta_1 \frac{sd_x}{sd_y}$
- If β₁ = 0.08, the standard deviation of weight and height are 11.6608976 and 1.9016788, respectively, what is r?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- There is a relationship between the estimated slope and the correlation between two variables in a simple linear regression.
- $r = \beta_1 \frac{sd_x}{sd_y}$
- If β₁ = 0.08, the standard deviation of weight and height are 11.6608976 and 1.9016788, respectively, what is r?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

0.5028585

Always look at the residuals

Brief history of testing

- 2200 BCE, Chinese believed to use testing for determining who would get governmental jobs
- Greek and Romans categorized individuals based on personality type ("blood" or "phlegm")
- Francis Galton's classification based on "natural gift" (i.e. eugenics)
 - Contributed to development of questionnaries, rating scales, and self-report inventories

- Wilhelm Wundt's laboratory and his focus on "standardization"
 - James Cattell's mental tests
 - Charles Spearman reliability and factor analysis

- 1905, Binet and Simon publish a test measuring intelligence in mental retarded school children in Paris
- 1939, Wechsler publishes a test to measure intelligence in adults (would become WAIS)
- Group intelligence test administered by the US military during WWI and WWII

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

WWI personality tests used to screen recruits

Psychological traits and states exist

- Psychological traits and states exist
- Psychological traits and states can be measured

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Psychological traits and states exist
- Psychological traits and states can be measured

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Behavior on tests predicts non-test behavior

- Psychological traits and states exist
- Psychological traits and states can be measured

- Behavior on tests predicts non-test behavior
- Measurement error is part of the process

- Psychological traits and states exist
- Psychological traits and states can be measured

- Behavior on tests predicts non-test behavior
- Measurement error is part of the process
- Test can be fair

- Psychological traits and states exist
- Psychological traits and states can be measured

- Behavior on tests predicts non-test behavior
- Measurement error is part of the process
- Test can be fair
- Test can benefit society

What makes a good test?

Individuals scores are relative only to some reference group

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct
- Collectively, this group is known as a normative sample and data from them make up the norms

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct
- Collectively, this group is known as a normative sample and data from them make up the norms
- Standardization is the process of setting clear procedures for administrating, scoring, and interpreting the test

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct
- Collectively, this group is known as a normative sample and data from them make up the norms
- Standardization is the process of setting clear procedures for administrating, scoring, and interpreting the test
- The normative sample could also be the standardized sample but not always

- Individuals scores are relative only to some reference group
- This group should represent the entire pool of test takers for the tested construct
- Collectively, this group is known as a normative sample and data from them make up the norms
- Standardization is the process of setting clear procedures for administrating, scoring, and interpreting the test
- The normative sample could also be the standardized sample but not always
- Understanding the normative sample is very important, why?

Sampling

- Simple random sample
- Stratified random sample

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Cluster random sample
- Purposive sample
- Convenience sample

Different Norms

- Percentiles
- Developmental Norms
 - Age Norms
 - A 6 year old performs at the level of a 10 year old
 - This is on this material only though!
 - Grade Norms
 - School year typically 10 months in the US
 - A 4th grader is performing at the level of a 5th grader in third month

- This is on this material only though!
- National Norms, nationally representative
 - Anchor norms enable two tests to be compared
 - In USA, students could take SAT or ACT for admission to college

Fixed Reference and Criterion-Related

- Fixed reference group scores are used as the basis for calculation of future administrations of the test
- Raw scores are scaled relative to the performance of the fixed reference group
 - Answering 50 items correctly one year and 50 on the following year doesn't mean you'll have the same score

- SAT does this through using anchor items and equating
- Criterion-referenced, evaluate a score with reference to a set criteria or standard NOT other test takers
- What is the fairest way to score grades in a class room?